Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332152

RESUMO

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Assuntos
Proteínas de Bactérias , Xanthomonas , Humanos , Proteínas de Bactérias/metabolismo , Xanthomonas/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Antibacterianos/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047078

RESUMO

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Assuntos
COVID-19 , Animais , Humanos , Peixe-Zebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome da Liberação de Citocina , Citocinas/metabolismo , RNA Mensageiro , Proteínas de Membrana , Proteínas Mitocondriais
3.
Sci Signal ; 15(731): eabm6046, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471943

RESUMO

Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.


Assuntos
Hipo-Hidrose , Mutação , Insensibilidade Congênita à Dor , Fosfolipase C gama , Receptor trkA , Analgésicos/farmacologia , Animais , Canalopatias/genética , Canalopatias/metabolismo , Células HEK293 , Humanos , Hipo-Hidrose/genética , Hipo-Hidrose/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacologia , Dor/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo
4.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34942250

RESUMO

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Feminino , Humanos , SARS-CoV-2 , Peixe-Zebra
5.
PLoS Pathog ; 17(8): e1009808, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398935

RESUMO

Type IV pili (T4P) are thin and flexible filaments found on the surface of a wide range of Gram-negative bacteria that undergo cycles of extension and retraction and participate in a variety of important functions related to lifestyle, defense and pathogenesis. During pilus extensions, the PilB ATPase energizes the polymerization of pilin monomers from the inner membrane. In Xanthomonas citri, two cytosolic proteins, PilZ and the c-di-GMP receptor FimX, are involved in the regulation of T4P biogenesis through interactions with PilB. In vivo fluorescence microscopy studies show that PilB, PilZ and FimX all colocalize to the leading poles of X. citri cells during twitching motility and that this colocalization is dependent on the presence of all three proteins. We demonstrate that full-length PilB, PilZ and FimX can interact to form a stable complex as can PilB N-terminal, PilZ and FimX C-terminal fragments. We present the crystal structures of two binary complexes: i) that of the PilB N-terminal domain, encompassing sub-domains ND0 and ND1, bound to PilZ and ii) PilZ bound to the FimX EAL domain within a larger fragment containing both GGDEF and EAL domains. Evaluation of PilZ interactions with PilB and the FimX EAL domain in these and previously published structures, in conjunction with mutagenesis studies and functional assays, allow us to propose an internally consistent model for the PilB-PilZ-FimX complex and its interactions with the PilM-PilN complex in the context of the inner membrane platform of the X. citri Type IV pilus.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Oxirredutases/metabolismo , Xanthomonas/metabolismo , Cristalografia por Raios X , Oxirredutases/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Virulência , Xanthomonas/crescimento & desenvolvimento
6.
Comput Struct Biotechnol J ; 19: 279-302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33425257

RESUMO

Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.

7.
PLoS Pathog ; 16(5): e1008561, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453788

RESUMO

Several Xanthomonas species have a type IV secretion system (T4SS) that injects a cocktail of antibacterial proteins into neighbouring Gram-negative bacteria, often leading to rapid lysis upon cell contact. This capability represents an obvious fitness benefit since it can eliminate competition while the liberated contents of the lysed bacteria could provide an increase in the local availability of nutrients. However, the production of this Mega Dalton-sized molecular machine, with over a hundred subunits, also imposes a significant metabolic cost. Here we show that the chromosomal virB operon, which encodes the structural genes of this T4SS in X. citri, is regulated by the conserved global regulator CsrA. Relieving CsrA repression from the virB operon produced a greater number of T4SSs in the cell envelope and an increased efficiency in contact-dependent lysis of target cells. However, this was also accompanied by a physiological cost leading to reduced fitness when in co-culture with wild-type X. citri. We show that T4SS production is constitutive despite being downregulated by CsrA. Cells subjected to a wide range of rich and poor growth conditions maintain a constant density of T4SSs in the cell envelope and concomitant interbacterial competitiveness. These results show that CsrA provides a constant though partial repression on the virB operon, independent of the tested growth conditions, in this way controlling T4SS-related costs while at the same time maintaining X. citri's aggressive posture when confronted by competitors.


Assuntos
Proteínas de Bactérias/metabolismo , Homeostase , Óperon , Proteínas Repressoras/metabolismo , Sistemas de Secreção Tipo IV/biossíntese , Xanthomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas Repressoras/genética , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
8.
Front Microbiol ; 10: 1078, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164878

RESUMO

Bacteria have been constantly competing for nutrients and space for billions of years. During this time, they have evolved many different molecular mechanisms by which to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial and eukaryotic cells. These processes often employ large multimeric transmembrane nanomachines that have been classified as types I-IX secretion systems. One of the most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have been shown to be able to secrete macromolecules directly into both eukaryotic and prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer from one bacterium to another was restricted to protein-DNA complexes during bacterial conjugation. This view changed when it was shown by our group that many Xanthomonas species carry a T4SS that is specialized to transfer toxic bacterial effectors into rival bacterial cells, resulting in cell death. This review will focus on this special subtype of T4SS by describing its distinguishing features, similar systems in other proteobacterial genomes, and the nature of the effectors secreted by these systems and their cognate inhibitors.

9.
Nat Microbiol ; 3(12): 1429-1440, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30349081

RESUMO

Type IV secretion (T4S) systems form the most common and versatile class of secretion systems in bacteria, capable of injecting both proteins and DNAs into host cells. T4S systems are typically composed of 12 components that form 2 major assemblies: the inner membrane complex embedded in the inner membrane and the core complex embedded in both the inner and outer membranes. Here we present the 3.3 Å-resolution cryo-electron microscopy model of the T4S system core complex from Xanthomonas citri, a phytopathogen that utilizes this system to kill bacterial competitors. An extensive mutational investigation was performed to probe the vast network of protein-protein interactions in this 1.13-MDa assembly. This structure expands our knowledge of the molecular details of T4S system organization, assembly and evolution.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos Multiproteicos/química , Sistemas de Secreção Tipo IV/química , Xanthomonas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Sistemas de Secreção Tipo IV/genética , Xanthomonas/genética
10.
Front Mol Biosci ; 5: 74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131964

RESUMO

Recent advances in cryo-electron microscopy (cryo-EM) have made it possible to solve structures of biological macromolecules at near atomic resolution. Development of more stable microscopes, improved direct electron detectors and faster software for image processing has enabled structural solution of not only large macromolecular (megadalton range) complexes but also small (~60 kDa) proteins. As a result of the widespread use of the technique, we have also witnessed new developments of techniques for cryo-EM grid preparation of membrane protein samples. This includes new types of solubilization strategies that better stabilize these protein complexes and the development of new grid supports with proven efficacy in reducing the motion of the molecules during electron beam exposure. Here, we discuss the practicalities and recent challenges of membrane protein sample preparation and vitrification, as well as grid support and foil treatment in the context of the structure determination of protein complexes by single particle cryo-EM.

11.
Sci Rep ; 8(1): 9842, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959345

RESUMO

Like several pathogenic bacteria, Xanthomonas infect host plants through the secretion of effector proteins by the Hrp pilus of the Type Three Protein Secretion System (T3SS). HrpE protein was identified as the major structural component of this pilus. Here, using the Xanthomonas citri subsp. citri (Xcc) HrpE as a model, a novel role for this protein as an elicitor of plant defense responses was found. HrpE triggers defense responses in host and non-host plants revealed by the development of plant lesions, callose deposition, hydrogen peroxide production and increase in the expression levels of genes related to plant defense responses. Moreover, pre-infiltration of citrus or tomato leaves with HrpE impairs later Xanthomonas infections. Particularly, HrpE C-terminal region, conserved among Xanthomonas species, was sufficient to elicit these responses. HrpE was able to interact with plant Glycine-Rich Proteins from citrus (CsGRP) and Arabidopsis (AtGRP-3). Moreover, an Arabidopsis atgrp-3 knockout mutant lost the capacity to respond to HrpE. This work demonstrate that plants can recognize the conserved C-terminal region of the T3SS pilus HrpE protein as a danger signal to defend themselves against Xanthomonas, triggering defense responses that may be mediated by GRPs.


Assuntos
Arabidopsis/imunologia , Proteínas de Fímbrias/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/metabolismo , Xanthomonas/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Fímbrias/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/imunologia , Xanthomonas/metabolismo
12.
BMC Microbiol ; 14: 96, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24742141

RESUMO

BACKGROUND: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. RESULTS: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. CONCLUSIONS: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Biofilmes/crescimento & desenvolvimento , Xanthomonas/fisiologia , Aderência Bacteriana , Mutação , Folhas de Planta/microbiologia , Proteoma/análise , Xanthomonas/genética , Xanthomonas/metabolismo
13.
Mol Plant Pathol ; 13(9): 1047-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22788999

RESUMO

Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citrus canker, contains a gene in the hrp [for hypersensitive response (HR) and pathogenicity] cluster that encodes a harpin protein called Hpa1. Hpa1 produced HR in the nonhost plants tobacco, pepper and Arabidopsis, whereas, in the host plant citrus, it elicited a weak defence response with no visible phenotype. Co-infiltrations of Xac with or without the recombinant Hpa1 protein in citrus leaves produced a larger number of cankers in the presence of the protein. To characterize the effect of Hpa1 during the disease, an XacΔhpa1 mutant was constructed, and infiltration of this mutant caused a smaller number of cankers. In addition, the lack of Hpa1 hindered bacterial aggregation both in solution and in planta. Analysis of citrus leaves infiltrated with Hpa1 revealed alterations in mesophyll morphology caused by the presence of cavitations and crystal idioblasts, suggesting the binding of the harpin to plant membranes and the elicitation of signalling cascades. Overall, these results suggest that, even though Hpa1 elicits the defence response in nonhost plants and, to a lesser extent, in host plants, its main roles in citrus canker are to alter leaf mesophyll structure and to aggregate bacterial cells, and thus increase virulence and pathogen fitness. We expressed the N-terminal and C-terminal regions and found that, although both regions elicited HR in nonhost plants, only the N-terminal region showed increased virulence and bacterial aggregation, supporting the role of this region of the protein as the main active domain.


Assuntos
Proteínas de Bactérias/metabolismo , Xanthomonas axonopodis/patogenicidade , Amiloide , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Citrus/imunologia , Citrus/microbiologia , Meios de Cultura , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Estrutura Terciária de Proteína , Virulência , Xanthomonas axonopodis/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...